Geostatistical Analyst

What GA Is

- An extension to ArcGIS (ArcInfo, ArcEditor, and ArcView)
- Solves spatial problems such as improving the estimating of temperature values, assessing environmental risks, or predicting the existence of any geophysical element
- Anyone who has spatial data can analyze and create surfaces using advanced statistical methods.

What GA Does

- Finds out the probability of certain variables occurring over an area where identifying every possible location would be impossible
- Uses interpolation methods to develop surfaces from measured samples to predict values for each location in a landscape
- Example
 - California air quality monitoring stations
 - Can determine the approximate amount of particulates in the specified area and where these particulates may be moving by creating an optimal interpolated surface

Reasons for GA's Use

- Can save lives
 - Can evaluate potential environmental hazards
 - Example: Approximate the severity of the Chernobyl accident on nearby areas
- Can increase efficiency
 - Can provide users with the capability to predict optimal conditions for effective and more reliable production
 - Example: Find out why crop yields in a certain area of his farm are below potential

Using GA

Four steps to creating an interpolated surface:

- Represent data
- Explore data
- Fit a model (create a surface)
- Perform diagnostics

Represent Data

- Evaluate the accuracy of the data and identify external factors that may, in the long run, play a part in the distribution of data
- Useful inferences from the oceans, elevation, roads, and polygon edges can be obtained

Explore Data

- Includes visualizing the distribution of the data and searching for data trends and global and local outliers
- Exploratory Spatial Data Analysis (ESDA) Tools

Fit a Model

- Deterministic Method
- Geostatistical Method

Deterministic Method Continued

- Global technique: calculate predictions using the entire data set
- Local technique: calculate predictions from the measured points within specified neighborhoods
- Example: Determining purchasing power of distant retail locations

Fit a Model: Geostatistical Method

- Based on statistics and is used for more advanced prediction surface modeling that also includes errors or uncertainty of predictions
- Divided into two groups:
 - Kriging
 - Cokriging

Geostatistical Method Continued

- Example: environmentalist sampling aquifers and discovering spatial correlation between sample points

Cokriging

Geostatistical Method Continued

- Prediction map: produced from the interpolated values to display random variables at locations where data has not been collected Error of prediction map: produced from the standard errors of interpolated values or the standard error of interpolated indicator values to display the uncertainty of the predictions

 Quantile map: produced when the user specifies a probability and wants a map of the values where predictions exceed (or do not exceed) the values at the specified probability

 Probability map: produced when

Provides cross-validation and validation tools

Conclusion: Geostatistical Analyst

- Offers a dynamic environment with a wide variety of tools and a friendly wizard interface to explore data, analyze anomalies, and optimally display an interpolated surface with associated uncertainties.
- Bridges the gap between geostatistics and GIS